

In mathematics, physics, and art, moiré patterns are large-scale interference patterns... For the moiré interference pattern to appear, the two patterns must not be completely identical, but rather displaced, rotated, or have slightly different pitch.

Twistronics (from twist and electronics) is the study of how the angle (the twist) between layers of two-dimensional materials can change their electrical properties.

twistronics + moiré \rightarrow over 20,000 papers

Morning: Moiré	Afternoon: Twistronics of	
superlattices in graphene	transition metal dichalcogenides	

2D materials family

strongly covalent-bonded atomically thin planes extracted from layered crystals with much weaker van der Waals adhesion between the layers

Twistronics of transition metal dichalcogenides

- Structure of twisted bilayers reconstruction into domains and domain wall networks
- Bilayer with inversion symmetry (AP) and without it (P)
- Ferroelectric interfaces and layer-asymmetric band edges in TMDs
- Switching FE polarisation by sliding and 'string theory' for domain wall networks
- Band-edge profiles, arrays of QDs, and 'narrow moiré minibands'
- Ferroelectric few-layer graphene

Moiré superstructures in TMD bilayers

are sensitive to P/AP orientation of unit cells in each layer, due to their inversion asymmetry

MX₂/M'X'₂ adhesion energy: *ab initio* DFT input

Mesoscale lattice relaxation (modelling)

minimise elastic + adhesion energy

$$\sum_{l=t,b} \left[(\lambda_l/2) \left(u_{ii}^{(l)} \right)^2 + \mu_l \left(u_{ij}^{(l)} \right)^2 \right] + W_{P/AP}(\boldsymbol{r}_0, d)$$
$$d_{P/AP}(\boldsymbol{r}_0)$$
$$d_{P/AP}(\boldsymbol{r}_0)$$

Short-period and long-period moiré structures

large angle or different chalcogens: almost rigid short-period superlattice

$$\ell \approx a/\sqrt{\theta_{P,AP}^2 + \delta^2}$$

twisted homobilayers: strain is almost pure shear deformations in both layers

same-chalcogen heterobilayers with δ<1%: shear and hydrostatic strain (biaxial) components in each layer

PRL 124, 206101 (2020)

$$\begin{array}{l} \theta^*_{AP} \approx 1.0^\circ \\ \theta^*_P \approx 2.5^\circ \end{array}$$

small angle same-chalcogen bilayers: domains separated by dislocations

Domains and domain wall networks: STEM

AP-bilayers

Networks of perfect screw dislocations

Piezoelectric domain wall (DW) networks in AP-MX₂ homobilayers

same sign of piezocharges in top & bottom layers

Nature Nano 15, 750 (2020)

Appl Phys Lett 118, 241602 (2021)

Twistronics of transition metal dichalcogenides

- Structure of twisted bilayers reconstruction into domains and domain wall networks
- Bilayer with inversion symmetry (AP) and without it (P)
- Ferroelectric interfaces and layer-asymmetric band edges in TMDs
- Switching FE polarisation by sliding and 'string theory' for domain wall networks
- Band-edge profiles, arrays of QDs, and 'narrow moiré minibands'
- Ferroelectric few-layer graphene

Domains and domain wall networks: P-bilayers

Networks of partial screw dislocations

Weak ferroelectricity in P-homobilayers of TMDs ('R-stacking')

spontaneous vertical polarisation due to the interlayer hybridisation of chalcogen orbitals in homobilayers with a broken-symmetry interface (MX and XM) reversible by sliding

twin structures which can be converted into each other by sliding

Scientific Reports 11, 13422 (2021)

Additive weak ferroelectricity in combinatorial P-homobilayers of TMDs and hBN

Phys Rev B 106, 125408 (2022)

★ XM-2H-XM

 P_{n}

	hBN	FP interfaces	$P (10^{-4} e/\text{\AA})$
IL			0
2L	BN ^{AP} BN ^P NB ^P	P_{BN} P_{NB}	0 5.5 -5.4
3L	BN ^{AP} -BN ^{AP} BN ^P -NB ^P BN ^P -BN ^P	$\frac{P_{\rm BN} + P_{\rm NB}}{2P_{\rm BN}}$	0 0 11.7
4L	BN ^{AP} -BN ^{AP} -BN ^{AP} BN ^P -NB ^P -BN ^P BN ^P -BN ^P -BN ^P	$\frac{2\boldsymbol{P}_{\rm BN} + \boldsymbol{P}_{\rm NB}}{3\boldsymbol{P}_{\rm BN}}$	0 6.3 17.9

Kelvin microscopy of ferroelectric domains in marginally twisted MoS₂

Polarization potential drop ΔV^{FE}

SKPM of MoS₂ bilayers gives Δ =60 meV

Nature Nano 17, 390 (2022)

Scientific Reports 11, 13422 (2021)

Electrically tuneable domain structure

makes XM and MX energetically inequivalent in electric field

$$\mathcal{E} = \sum_{a=t,b} \left[\lambda(u_{ii}^a)^2 + \mu u_{ij}^a u_{ji}^a \right] + W(\vec{r}_0, d) - DP(\vec{r}_0, d) \to \vec{u}^{t/b}$$

Electrically tuneable domains in MoS₂/MoS₂

polarisation is reversed by interlayer sliding near domain boundaries, detected by SEM imaging

Nature Nanotechnology 17, 390 (2022)

'string theory' of tuneable domain wall networks

universal solution

threshold displacement field

Nano Letters 22, 1534 (2022)

Moiré pattern as a magnifying glass for small intra-layer deformations (traced by following XX stacking nodes)

STM mapping of a twisted WS₂ P-bilayer

$$\begin{array}{c} \mathbf{400 \ nm} \\ \mathbf{500} \\ \mathbf{100} \\$$

$$\vec{u}(\vec{R}_{n_1,n_2}) = \theta \hat{z} \times \vec{R}_{n_1,n_2} - n_1 \vec{a}_1 - n_2 \vec{a}_2$$

Advanced Materials 35, 2370273 (2023)

Faraday Discussions 173, 137 (2014); Ann der Phys 527, 359 (2015)

'String theory' for tuneable domain wall networks: comparison with STM data taken on WS₂ bilayers

Polarisation and hysteresis in the FE tunnelling transistor

Layer-asymmetric band edge states in optics opposite linear Stark shifts for excitons in MX' and XM' stacking domains

Nature Nanotechnology 15, 750 (2020)

Layer-asymmetric band edge states in P-MoS₂/ MoS₂ and P-WS₂/WS₂: tunnelling characteristics

R-type bilayers lack both mirror reflection and inversion symmetries

conductive AFM scanning reveals different tunnelling I(V) characteristics for twinned 'R'-type domains (MX' and XM')

Nature Nanotechnology 15, 592 (2020)

weight of electrons' wavefunctions in the bands (Q-valley) differ for the top and bottom layers

Switching of largest domains: route towards a memristor functionality?

Twistronics of transition metal dichalcogenides

- Structure of twisted bilayers reconstruction into domains and domain wall networks
- Bilayer with inversion symmetry (AP) and without it (P)
- Ferroelectric interfaces and layer-asymmetric band edges in TMDs
- Switching FE polarisation by sliding and 'string theory' for domain wall networks
- Band-edge profiles, arrays of QDs, and 'narrow moiré minibands'
- Ferroelectric few-layer graphene

QDs and moiré superlattice minibands in small-angle twisted P-homobilayers of MoS₂, MoSe₂, WS₂

QDs and moiré superlattice minibands in small-angle twisted AP-homobilayers of MoS₂, MoSe₂, WS₂ – for Γ-valley holes and Q-valley electrons

Twistronics of transition metal dichalcogenides

erc

GRAPHENE

V Enaldiev (NGI / ΜΦΤͶ) A Garcia-Ruiz (NGI) F Ferreira (CDT NOWNANO) A McEllistrim (CDT NOWNANO) S Magorrian (NGI / Warwick) V Zolyomi (NGI / Daresbury Lab) C Yelgel (NGI / Erdogan Univ)

EPSRC

R Gorbachev (NG) S Haigh (NG) A Geim (NG) O Kazakova (NPL) O Kazakova (NPL) Beton (Nottingham) A Luican-Mayer (Ottawa) M Ben Shalom (Tel Aviv) H Park (Harvard)